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Abstract
Suppose we have a natural Hamiltonian H of n particles on the line, centre-of-
mass momentumP and a further independent quantityQ, cubic in the momenta.
If these are each Sn invariant and mutually Poisson commute we have the
Calogero–Moser system with potential V = 1

6

∑
i �=j ℘ (qi − qj ) + const.

PACS numbers: 0230I, 0550, 4520J

1. Introduction

The following paper deals with many-particle Hamiltonian systems on the line and their
integrability. Although such systems arise in many physical settings and have been extensively
studied there is still no simple way to determine their integrability or otherwise. General
arguments [17] tell us that many-particle Hamiltonian systems for sufficiently repulsive
potentials are integrable, yet there appear to be few direct methods of actually solving for
such systems. The integrable systems we can actually solve seem to form a very privileged
class. The result presented here sheds some light on this state of affairs. We will follow a less
well known route to the study of integrable systems, that employing functional equations.

Here we address the following question: what Sn-invariant, natural Hamiltonian systems
of n particles on the line and conserved centre-of-mass momentum admit a third independent,
Sn invariant, mutually Poisson commuting quantity, cubic in the momenta? (The precise
statement and explanation of these terms will be given below.) Our answer is somewhat
surprising. These data characterize the an Calogero–Moser systems. This is the ‘rigidity’ of
our title. Although no restrictions were placed on further Poisson commuting invariants we
arrive at a system for which sufficient exist to yield complete integrability. The mixture of
symmetry and polynomial momentum is powerful. Such natural requirements and our result
go some way in explaining the ubiquity of this class of models. The situation is somewhat
reminiscent of the original work of Ruijsenaars and Schneider [28] who, when demanding
certain commutation properties, discovered a class of Hamiltonian systems that proved to be
integrable. It is also analogous to what one encounters with W and related algebras, where
a few commutation relations specify the whole structure. Indeed, the connections between
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conformal field theory and these models may mean this is more than analogy [18, 23]. In the
quantum regime analogous and stronger properties are already known (and will be remarked
upon further in due course) when the symmetry and polynomial dependence above are replaced
by symmetry and holomorphicity. Again, a few commutation relations specify the whole
structure and the result we obtain here is the classical version of a result of [27, proposition 4.2
and remark 4.4].

There are obvious generalizations to this paper which will be taken up in the discussion.
Before turning to the statement and proof of the result (given in the following two sections)
it is perhaps worth making some general remarks on connections between integrable systems
and functional equations. Functional equations have, of course, a long and interesting history
in connection with mathematical physics and touch upon many branches of mathematics [1,2].
They have arisen in the context of completely integrable systems in several different ways. We
have already mentioned the work of Ruijsenaars and Schneider [28]. Hietarinta [19] similarly
derived a functional equation when seeking a second quartic integral for two-particle systems
on the line. A further way in which they arise is by assuming an ansatz for a Lax pair, the
consistency of the Lax pair yielding functional and algebraic constraints. In this manner
Calogero discovered the elliptic Calogero–Moser model [13] and Bruschi and Calogero [8,9]
constructed Lax pairs for the Ruijsenaars models. The functional equations found by this route
appear [4] as particular examples of

φ1(x + y) =

∣∣∣∣
φ2(x) φ2(y)

φ3(x) φ3(y)

∣∣∣∣
∣∣∣∣
φ4(x) φ4(y)

φ5(x) φ5(y)

∣∣∣∣
.

The general analytic solution of this has been given by Braden and Buchstaber [5]. Interestingly,
Novikov’s school have shown that the Hirzebruch genera associated with the index theorems
of known elliptic operators arise as solutions of functional equations which are particular
examples of this. The string-inspired Witten index was shown by Ochanine to be described
by Hirzebruch’s construction where now the elliptic function solutions were important [20].
A similar approach based upon an ansatz and consequent functional equations was used by
Inozemtsev [21] to construct generalizations of the Calogero–Moser models, while in [6]
this route was used to construct new solutions to the WDVV equations. Various functional
equations have also arisen when studying the properties of wavefunctions for associated
quantum integrable problems. Gutkin found several functional relations by requiring a
nondiffractive potential [16] while Calogero [14] and Sutherland [29, 30] obtained functional
relations by seeking factorizable ground-state wavefunctions. A recurring equation in this
latter approach is

∣∣∣∣∣

1 1 1
f (x) g(y) h(z)

f ′(x) g′(y) h′(z)

∣∣∣∣∣ = 0 x + y + z = 0.

This finds a general solution in [3, 10]. In this paper we will make use of the particular
case of this equation (variously solved under evenness and holomorphicity constraints in [27],
analyticity constraints in [10], and most generally in [3]).

Theorem 1. Let f be a three-times differentiable function satisfying the functional equation
∣∣∣∣∣

1 1 1
f (x) f (y) f (z)

f ′(x) f ′(y) f ′(z)

∣∣∣∣∣ = 0 x + y + z = 0. (1)
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Up to the manifest invariance

f (x) → αf (δx) + β

the solutions of (1) are one of f (x) = ℘(x + d), f (x) = ex or f (x) = x. Here ℘ is the
Weierstrass ℘ function and 3d is a lattice point of the ℘ function.

Perhaps one reason for the underlying connection between integrability and functional
equations is the fact that Baker–Akhiezer functions obey such relations. Such connections
between integrable functional equations and algebraic geometry have been studied by
Buchstaber and Krichever [11] and Dubrovin et al [15]. Whatever, these connections between
functional equations and complete integrability warrant further investigation.

2. The result

The result discovered is the following.

Theorem 2. Let H and P be the (natural) Hamiltonian and centre-of-mass momentum:

H = 1
2

n∑

i=1

p2
i + V P =

n∑

i=1

pi. (2)

Denote by Q an independent third-order quantity:

Q =
n∑

i=1

p3
i + 1

6

∑

i �=j �=k

dijkpipjpk +
∑

i �=j

dijp
2
i pj + 1

2

∑

ij

aijpipj +
∑

i

bipi + c. (3)

If these are Sn-invariant and Poisson commute,

{P,H } = {P,Q} = {Q,H } = 0

then V = 1
6

∑
i �=j ℘ (qi − qj ) + const and we have the Calogero–Moser system.

Some explanatory remarks are in order. Here Sn invariance means that for any coefficient
αij (q1, q2, . . . , qn) in the expansions above we have ασ(i)σ (j)(qσ(1), qσ(2), . . . , qσ(n)) for all
σ ∈ Sn. In particularV (q1, q2, . . . , qn) = V (qσ(1), qσ(2), . . . , qσ(n)) for allσ ∈ Sn. We remark
that, had we begun with particles of possibly different particle masses, H = 1

2

∑n
i=1 mip

2
i +V ,

the effect of Sn invariance is such as to require these masses to be the same. Thus we are
assuming the Sn-invariant Hamiltonian of the introduction. Finally, by ‘an independent third-
order quantity’Qwe mean one functionally independent ofH andP and for which one cannot
obtain an invariant of lower degree by subtracting multiples of P 3 and PH . We are not dealing
with quadratic conserved quantities here.

3. The proof

Our proof has five steps. We begin by noting that the Poisson commutativity {Q,H } = 0
yields (with {qi, pj } = δij )

0 = 1
6

∑

l

∑

i �=j �=k

(∂ldijk)pipjpkpl +
∑

l

∑

i �=j

(∂ldij )p
2
i pjpl +

∑

i,j,l

(∂laij )pipjpl

+
∑

i,j

(∂ibj )pipj − 3
∑

i

p2
i (∂iV ) − 1

2

∑

i �=j �=k

dijk(∂kV )pipj

−
∑

i �=j

dij (2(∂iV )pipj + (∂jV )p
2
i )

−
∑

i,j

aij (∂iV )pj +
∑

i

(∂ic)pi −
∑

i

bi∂iV . (4)
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The steps then are:

(1) First we show that the dijk and dij terms in (3) may be taken to be zero.
Having made this simplification we then focus on the terms remaining in (4) independent
and quadratic in the momenta:

∂jbi + ∂ibj = 0 i �= j (5)

∂ibi − 3∂iV = 0 (6)∑
bi∂iV = 0. (7)

(2) Second, using (5), (6) we show that bj may be written in the form

bj =
∑

i �=j

W(qi − qj ) + U(qj ) (8)

where W is an even function.
(3) Third, using {P,Q} = 0, we may set U = 0.
(4) Fourth, that we may rewrite (7) in the form

0 =
∑

i<j<k

∣∣∣∣∣

1 1 1
W(qi − qj ) W(qj − qk) W(qk − qi)

W ′(qi − qj ) W ′(qj − qk) W ′(qk − qi)

∣∣∣∣∣ . (9)

(5) Finally we argue that each term in the sum (9) itself vanishes and so we arrive at an
equation of the form (1). The result then follows simply.

Step 1. We begin by focusing on the terms in (4) quartic in the momenta. For l different from
i, j, k we see that ∂ldijk = 0, and so dijk = dijk(qi, qj , qk). Further, from the coefficients of
p3
i pj , p2

i p
2
j and p2

i pjpk (for i, j, k distinct), respectively, we find

∂idij = 0 ∂jdij = 0 ∂jdik + ∂kdij + ∂idijk = 0. (10)

The first and third of these together show ∂2
i dijk = 0 and so dijk is at most linear in qi . By

symmetry

dijk = αqiqjqk + β(qiqj + qjqk + qkqi) + γ (qi + qj + qk) + δ.

Now, using {P,Q} = 0 shows α = β = γ = 0. Thus dijk is a constant. This fact, together
with the second and third equations of (10), shows ∂2

k dij = 0. Therefore dij is at most linear in
qk (for k �= i, j ). The first two equations of (10) show dij is independent of qi and qj . Now a
similar argument employing {P,Q} = 0 yields dij to be constant. By subtracting appropriate
multiples of P 3 and PH we may then remove the d terms from Q. Our assumption of
independence means that the leading term of Q does not vanish when doing this. Thus (after
such a subtraction and a possible rescaling) we may set the d terms inQ to be zero. Henceforth
we will assume this simplification has been made.

Step 2. Suppose i, j, k are distinct. Then from (5) we obtain (∂ij = ∂i∂j , etc)

∂jkbi + ∂ikbj = 0 ∂jkbi + ∂ij bk = 0.

Taking the difference of these we see ∂i(∂kbj − ∂jbk) = 0 and so

−∂kbj + ∂jbk = 2F(qj , qk).

Combining this with ∂kbj + ∂jbk = 0 we obtain

∂jbk = F(qj , qk) = −F(qk, qj ) = −∂kbj .
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We wish to further restrict the form of F . If we apply ∂i to (5) and then use (6) we see

−∂i∂ibj = ∂i∂jbi = 3∂i∂jV = ∂j ∂ibj

and so

(∂i + ∂j )∂ibj = 0.

Therefore

∂ibj = F(qi − qj ) F (x) = −F(−x). (11)

Upon integrating we obtain (8) where W ′(x) = F(x) and W is an even function. (In principle,
upon integrating the odd function F we obtain a function W̃ where W̃ ′(x) = F(x) and
W̃ (x) = W̃ (−x)+ c̃. A priori we cannot argue that the integration constant c̃ vanishes if W̃ (0)
is not defined, as happens for singular potentials. However, settingW(x) = 1

2 (W̃ (x)+W̃ (−x))

again yields (8) up to a constant, which at this stage may be incorporated into the arbitrary
function U .) We have employed the Sn symmetry throughout this step to identify each of the
possibly different functions F , W and U arising from each pair as the same.

Step 3. Now, upon employing {Q,P } = 0 we see
∑n

i=1 ∂ibj = 0. Using (8) we deduce
that ∂iU(qi) = 0 and so U(qi) is a constant. Such a constant may be removed altogether by
subtracting an appropriate multiple of P from Q, or simply incorporated into a redefinition of
W(x). Whatever, we may take U = 0. Then

b2
i =

∑

j �=i

W 2(qj − qi) + 2
∑

j �=k �=i

W(qj − qi)W(qk − qi). (12)

Step 4. Now, employing (6) and (7) we see 0 = ∑
i ∂ib

2
i . Using (12) we obtain

∂ib
2
i = −2

∑

j �=i

W(qj − qi)F (qj − qi) + 2
∑

j �=k �=i

∂i(W(qj − qi)W(qk − qi)).

When we sum this expression over i the first term will vanish using oddness and evenness
properties. Thus we arrive at

0 =
∑

i �=j �=k

∂i(W(qj − qi)W(qk − qi)).

Define Aijk by

Aijk = ∂i(WjiWki) + ∂j (WijWkj ) + ∂k(WikWjk) =
∣∣∣∣∣

1 1 1
Wij Wjk Wki

Fij Fjk Fki

∣∣∣∣∣

where we use the shorthand Wij = W(qi −qj ). Then from the functional form of W we know

Aijk = Ajik = Ajki = )(qi − qj , qj − qk, qk − qi) (13)

and is fully symmetric in i, j, k. Thus

0 =
∑

i<j<k

Aijk =
∑

i<j<k

∣∣∣∣∣

1 1 1
W(qi − qj ) W(qj − qk) W(qk − qi)

W ′(qi − qj ) W ′(qj − qk) W ′(qk − qi)

∣∣∣∣∣ (14)

which is equation (9).
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Step 5. We now wish to argue that Aijk = 0. If we apply ∂ijk to (14) we find that

∂ijkAijk = 0

as only one term in the sum depends on i, j, k. Thus ∂jkAijk is independent of qi , and
consequently, due to the functional form (13), it must be a function of qj − qk only. Therefore
we must have

∂jkAijk = B(qj − qk)

and so, after integration and use of symmetry,

Aijk = E(qi − qj ) + E(qj − qk) + E(qk − qi)

(where E(x) = E(−x) and E′′(x) = −B(x)). We may therefore rewrite (14) as

0 =
∑

i<j

E(qi − qj ). (15)

Taking the partial derivative ∂ij of this expression then gives ∂ijE(qi − qj ) = 0, as only this
term depends on both i and j . This, together with the evenness of E, tells us that E is a
constant. In conjunction with (15) we deduce E = 0. That is, Aijk = 0. Therefore for each
distinct triple i, j, k

0 =
∣∣∣∣∣

1 1 1
W(qi − qj ) W(qj − qk) W(qk − qi)

W ′(qi − qj ) W ′(qj − qk) W ′(qk − qi)

∣∣∣∣∣ .

But this is none other than (1). The even solution of this is W(x) = ℘(x), up to a constant.
Finally, using (6) and (8) we obtain the stated conclusion.

4. Discussion

Our result may be interpreted as a rigidity theorem for the an Calogero–Moser system and in
part explains this model’s ubiquity: demanding a cubic invariant together with Sn invariance
necessitates the model. A detailed scrutiny of our proof shows several generalizations possible.
A natural generalization is to replace the Sn invariance with the invariance of a general Weyl
group W and make a connection with the Calogero–Moser models associated with other root
systems [24,25]. Quite a bit is known about the quantum generalizations in this regard. Given
a commutative ring R of W -invariant, holomorphic, differential operators, whose highest-
order terms generate W -invariant differential operators with constant coefficients, then the
potential term for the Laplacian H (the quantum Hamiltonian) has Calogero–Moser potential
appropriate to W [26,27]. In this setting it is known that the commutativity of just a few low-
order elements of R dictate the form of the potential and the commuting algebra (at least for the
classical root systems [27]). In particular, the result derived above is the classical analogue of a
result of [27] for the an root system, where a functional equation equivalent to (9) was obtained
by requiring the commutativity of certain linear, quadratic and cubic holomorphic differential
operators. Taniguchi’s results [31] are also indicative of the rigidity of these quantum models:
if H is the quantum Hamiltonian just discussed, and Q1,2 are holomorphic (but not a priori W -
invariant) differential operators of appropriate degrees for which [Q1,2,H] = 0, then Q1,2 ∈ R
and consequently [Q1,Q2] = 0. Interestingly in this paper we have employed a functional
equation encountered elsewhere in the quantum regime.

A further generalization of this paper would be to replace the natural Hamiltonian structure
of our theorem with (say) Hamiltonians of Ruijsenaars type. We remark in passing that there
are still several unsolved functional equations surrounding this model. One might also seek
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to relax the full Sn invariance imposed here. By so doing this will allow the Toda models.
As shown by Inozemtsev [22], the Toda models arise as scaling limits of the Calogero–Moser
model, the latter being the ‘generic’ situation [4]. It would be interesting to understand this in
terms of the coadjoint descriptions of these models.

Though perhaps not obvious, this paper arose from trying to understand models
conjectured to be integrable (see, for example, [7]). Given a putative integrable Hamiltonian,
what might the invariants look like? This paper tells us that for Sn invariant systems not
of Calogero–Moser type we should look for conserved quantities quartic and above in the
momenta.
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